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Column Generation for Discrete-Rate
Multi-User and Multi-Carrier Power Control
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and Tomas Nordström, Senior Member, IEEE

Abstract—We consider a constrained multi-carrier power
allocation problem in interference-limited multi-user systems
with a finite set of transmission rates. The Lagrange relaxation
is a common technique for decomposing such problems into
independently solvable per-subcarrier problems. Deviating from
this approach our main contribution is the proposal of a
novel spectrum management framework based on a Nonlinear
Dantzig-Wolfe problem decomposition. It allows for suboptimal
initialization and suboptimal power allocation methods with low
complexity. While we show that the combinatorial per-subcarrier
problems have polynomial complexity in the number of users,
we find that such suboptimal methods are indispensable in
large systems. Thus we give an overview of various basic dual
heuristics and provide simulation results on a set of thousand
digital subscriber line (DSL) networks which show the superior
performance of our framework compared to previous power
control algorithms.

Index Terms—Power control, DSL, optimization methods,
interference channels.

I. INTRODUCTION

IN this paper we study the dynamic spectrum management
(DSM) problem of optimal bit and power allocation in

interference-limited multi-user and multi-carrier systems with
a finite set of transmission rates, focussing on its setting
in digital subscriber lines (DSL). Lagrange dual relaxation
(LDR), a constrained optimization technique [1], is applicable
to the DSM problem for lowering its combinatorial complexity
in the number of subcarriers. The application of LDR in power
spectrum shaping for improving the spectral compatibility
between different DSL technologies has been proposed in [2].
In [3] LDR was applied to a combinatorial multi-user DSM
problem in modern DSL systems, which triggered further
research on optimal and/or low-complexity LDR-based DSM
algorithms for DSL. We refer to [4]–[6] for examples of
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discrete-rate LDR-based optimization algorithms that are most
relevant for our work, and to [7]–[9] for an overview of various
continuous optimization schemes for the DSM problem.

An alternative to the LDR is the time-sharing relaxation
which allows for a convex combination of various power al-
location solutions. Optimal subcarrier and power allocation in
orthogonal frequency division multiple access (OFDMA) net-
works with continuous power allocation was recently shown
to have a polynomial time approximation [10], where also an
equivalent linear time-sharing formulation was derived. Simi-
larly, continuous sharing of subcarriers (in time or frequency)
was shown to yield a convex and therefore polynomially solv-
able optimization problem under continuous rate and power
allocation in [11], [12]. The time-sharing problem relaxation
is known to be the strong dual problem to the LDR, also
when the set of transmission rates is finite [1], [13]. In DSM
problems for interference-limited DSL systems time-sharing
was introduced as a method which schedules various multi-
user power allocations over time, each of these allocations
still allowing for inter-user interference [14], [15]. Complexity
reduction ideas for the per-subcarrier problems in multi-user
systems with a finite set of transmission rates were proposed
in [4]–[6], [16], [17].

Our contributions and the outline of the paper are as follows:
After introducing the optimization model and its time-sharing
relaxation in Section II we will propose a novel framework
for multi-carrier power control based on a nonlinear Dantzig-
Wolfe (NDW) decomposition and a problem “disaggregation”
[18] in Section III. This approach differs from previous
Lagrange relaxation schemes for DSM in interference-limited
systems [3], [4], [6], [19], [20] in the dual master problem
which is a linear program giving time-sharing solutions, and
which exploits independence among subcarriers by separate
treatment of the per-subcarrier solutions. We emphasize that
the time-sharing solutions do in our case still allow for inter-
user interference. In Section III-B we sketch how NDW
decomposition can not only be applied to sum-rate and sum-
power optimization but also for the maximization of users’
minimum rate and weighted proportional sum-rate fairness.
Differently to most work on dual-relaxation based DSM
schemes, in Section III-C we also suggest a heuristic to
recover a feasible solution to the original primal problem.
The proposed DSM method avoids numerical convergence
problems arising due to similarity of subcarriers [19] or a
positive duality gap [10]. Furthermore, it bears the potential
to use a combination of optimal and low-complexity subopti-
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mal solutions to the combinatorial per-subcarrier subproblems
while providing a monotonously improving objective value.
This is in contrast to most previous Lagrange-relaxation based
DSM algorithms where the dual master problem theoretically
demands for optimal subproblem solutions, an exception being
for instance the scheme in [21] which uses approximate
subgradients [1].

The applicability to various DSM problems and the possi-
bility to solve the subproblems heuristically and in parallel are
the most attractive features of our framework. This is because
we found the optimal subcarrier solution for general DSL
networks intractable to compute [22], although we will show
that these subproblems do in fact have polynomial complexity
in the number of users. Hence, we devote Section IV to a brief
overview of two basic building blocks for more sophisticated
meta-heuristics [23]: the greedy search and the local search. As
an example, for scenarios with few dominant interfering users
we propose a greedy search heuristic which can explicitly
make use of this network feature. The simulation results fol-
lowing in Section V demonstrate the advantage of performing
a heuristic combinatorial search jointly for all users. Besides
a 50 user very high speed DSL (VDSL) network example we
also provide an average DSM performance comparison in a
large set of thousand VDSL scenarios with mixed central
office (CO) and cabinet deployment. Our contributions are
summarized in Section VI.

II. MODEL AND PROBLEM FORMULATIONS

We assume a far-end crosstalk limited DSL system with
U coordinated lines employing discrete multi-tone (DMT)
modulation and denote the sets of indices for users and
subcarriers by U = {1, . . . , U} and C = {1, . . . , C},
respectively. Under standard assumptions [24] the achievable
rate per DMT-symbol for user u ∈ U on subcarrier c ∈ C can
be approximated by

ruc (pc) = log2

(
1 +

Huu
c puc

Γ(
∑

i∈U\uHui
c pic + Nu

c )

)
, (1)

where pc = [p1c , . . . , p
U
c ]

T , puc is the transmit power spectral
density (PSD), where Γ is the SNR-gap to capacity, where
Nu

c is the total receiver noise spectral density, and where Huu
c

and Hui
c are the squared magnitudes of the channel transfer

coefficient of user u and from user i to user u, respectively,
on subcarrier c. We will write the vector of all users’ rates as
rc(pc) = [r1c (pc) , . . . , r

U
c (pc)]

T and use pc(rc) to denote
the unique [25] power allocation resulting in the rate vector
rc.

A. Original Optimization Problem

A generic multi-user DSM problem in the form of a
multi-dimensional nonlinear Knapsack problem [26] can be
formulated as

P ∗
(R,P) = minimize

pc∈Qc,c∈C

∑
c∈C

fc(pc, ŵ, w̌) (2a)

subject to
∑
c∈C

rc (pc) � R, (2b)

∑
c∈C

pc � P, (2c)

where the objective is a weighted-sum of sum-powers and
sum-rates defined by

fc(pc, ŵ, w̌) = ŵTpc − w̌T rc(pc), c ∈ C, (3)

where ŵ, w̌ ∈ RU
+ are weights, where R ∈ RU

+ are the target-
rates in [bits/DMT-symbol], where P ∈ RU

+ are the maximum
sum-powers, and where

Qc = {pc|ruc (pc) ∈ B, 0 ≤ puc ≤ p̂uc , ∀u ∈ U}, (4)

is the set of feasible PSD’s on subcarrier c. In (4), p̂uc are
spectral mask constraints and B = {0,Δ, 2Δ, . . . , B̂} is the
set of positive, discrete bit allocations per-subcarrier, where
we assume rate-steps of equal size Δ and a single maximum
number of loaded bits B̂ for all users, respectively. Note that
this formulation allows to consider sum-power minimizing
users as well as sum-rate maximizing users in a single
optimization problem by an adequate setting of the weights ŵ
and w̌, which results in a trade-off between the two objectives.
For later reference we define the dual problem to (2) as

D∗
(R,P) = maximize

λ�0,ν�0
qtot(λ,ν), (5)

where the dual function [1] is defined as

qtot(λ,ν) =
∑
c∈C

qc(λ,ν) + λTR − νTP, (6)

where λ,ν ∈ RU are the Lagrange multipliers associated with
constraints (2b) and (2c), respectively, and where

qc(λ,ν) = min
pc∈Qc

{
fc(pc, ŵ + ν, w̌+ λ)

}
, ∀c ∈ C. (7)

B. Time-Sharing Relaxation

As an alternative relaxation to the dual relaxation in (5)
a problem formulation involving time-sharing among various
bit and power allocations was suggested for OFDMA systems
in [11], [12] and for interference-limited systems in [14],
[15]. For time-sharing1 we consider all allocations pi

c ∈ Qc

indexed by i ∈ Ic = {1, . . . , |Qc|} and the fractions of time
0 ≤ ξic ≤ 1 that allocation i is used on subcarrier c ∈ C.
Considering time-average objective and constraint values we
write the continuous time-sharing relaxation of (2) as the linear
program (LP)

P ∗,ts
(R,P) = minimize

ξic≥0,i∈Ic,c∈C

∑
c∈C

∑
i∈Ic

fc(p
i
c, ŵ, w̌)ξic (8a)

subject to
∑
c∈C

∑
i∈Ic

rc(p
i
c)ξ

i
c � R, (8b)

∑
c∈C

∑
i∈Ic

pi
cξ

i
c � P, (8c)

∑
i∈Ic

ξic = 1, ∀c ∈ C, (8d)

where constraint (8d) ensures that the time-shares on each
subcarrier sum to one. We emphasize that the problem in (8)
allows for inter-user interference using a finite set of rates
according to (1), but varying the fraction of time the possible
power combinations on each subcarrier are applied. While we

1Note that we regard time-sharing solely as an algorithmic detour to obtain
solutions for our original problem in (2), as will become clearer in Section III.
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employed time-sharing on a per-subcarrier basis, note that it
can also be performed in “aggregated” form [18] over the∏

c∈C |Qc| feasible sum-power and corresponding sum-rate
allocations. We have the following result characterizing the
optimum of (8):

Theorem 1: Define Iξ
c = {i ∈ Ic|ξic > 0}, for c ∈ C,

and the set of subcarriers where time-sharing occurs as
C+
ξ = {c ∈ C| |Iξ

c | ≥ 2}. Assuming feasibility of (5) it holds
that P ∗,ts

(R,P) = D∗
(R,P) and there exists a solution ξ̃ to (8)

with |C+

ξ̃
| ≤ 2U , i.e., time-sharing is required on at most 2U

subcarriers.
Proof: The proof of the first statement is analogous to

that explicitly given in [13] and follows from showing the
equivalence between the dual linear program to (8) and the
dual problem in (5), and strong duality due to the assumed
feasibility of (5). The second statement follows as (8) has
2U + C constraints and therefore a solution exists2 that has
at most this number of non-zero variables [27]. As |Iξ

c | ≥ 1,
for all c ∈ C, we can subtract |C| = C from the number of
non-zero variables and obtain that the number of subcarriers
|C+

ξ̃
| where time-sharing occurs is at most 2U , concluding

the proof. A similar conclusion can be drawn by applying
the Shapley-Folkman theorem [28, p. 374], cf. the geometric
interpretations of (2) and (5) in [13].
For completeness, we proceed by analyzing the scalability of
the time-sharing problem in (8). The number of feasible bit
and power allocations |Qc|, c ∈ C, and therefore the number
of variables in (8) grows with an increasing number of users
U . However, the following result indicates how interference
among users restricts this growth.

Theorem 2: Assuming Hui
c

Huu
c

≥ α > 0, the number of
feasible allocations |Qc| for subcarrier c ∈ C grows at most
polynomially as O(U Û ), where the constant exponent Û is
given by

Û = 1 +
(
Γ(2Δ − 1)α

)−1
. (9)

See Appendix A for a proof.
The parameter α has the interpretation of a minimal nor-

malized cross-channel attenuation coefficient in the network.3

Using this minimal value we obtain a lower bound for the
(normalized) interference noise per interfering user in (1).
Assuming all users transmit at a positive rate we thereby obtain
an upper-bound for the number of users that can be supported
by the system in (9), hence limiting the growth of the time-
sharing formulation in (8) as shown by Theorem 2.

Next we will illustrate this bound and the true number
of power allocations |Qc| by a DSL example, noting that
normalized crosstalk coefficients in DSL networks have been
reported to be fairly weak, e.g., α < −11.3 dB on typical
VDSL lines [29]. In Fig. 1 we plot the number of possible
bit allocations on the lowest (at about 3MHz) and highest
subcarrier (at about 12MHz) for a symmetric VDSL upstream
scenario with line-lengths lu = 800m, ∀u ∈ U , and simulation
parameters as specified in Section V. Additionally we show a
polynomial of degree Û shifted by Û , cf. (19c). Interference

2Such a solution is referred to as a “basic solution” in LP theory [27].
3We acknowledge the fact that theoretically there are scenarios where such

a lower bound can not be assumed.
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Fig. 1. Number of feasible bit allocations |Qc| on selected subcarriers c ∈ C
in a symmetric VDSL scenario with 800 m long lines.

among users clearly decelerates the complexity growth in U .
Due to higher crosstalk couplings this effect of interference
on complexity is more visible at higher subcarriers, where the
number of possible allocations is anyway lower due to the
more attenuated direct channel. The conclusion we can draw
from this example is that while interference has an impact
on how fast the number of variables

∑
c∈C |Qc| in the LP in

(8) grows with the number of users U , this number (although
of complexity theoretic interest) is too large for a direct LP
solution. Hence, we proceed in the next section by analyzing
a decomposition scheme which works with a small subset of
these time-sharing variables.

III. A NOVEL FRAMEWORK FOR DSM

In this section we propose a novel DSM framework which
approaches the original problem in (2) by iteratively optimiz-
ing the time-sharing relaxation in (8), and using a heuristic
for recovering feasible solutions for the original problem.
Its key features are the decomposition into independent per-
subcarrier problems similar to (7) as shown in Section III-A,
its applicability to various DSM objectives as highlighted in
Section III-B, and the possibility for heuristic solutions of the
per-subcarrier problems as studied in Section IV. Our method
is related to previous dual relaxation based DSM algorithms
[3], [4], [6], [19], [20] through Theorem 1 and partly motivated
by the results in [4], [10] showing a vanishing duality gap —
that is the difference between the optimal objectives in the
original problem in (2) and its dual in (5).

A. Nonlinear Dantzig-Wolfe Decomposition

The decomposition scheme described next from first prin-
ciples is based on the mathematical programming concept
of column4 generation [30], or more precisely a nonlinear
Dantzig-Wolfe (NDW) decomposition [18], [31, Ch. 23] of
(2). Applications of this decomposition approach in the area
of wireless communication can be found in [32]–[35]. At
iteration t of the algorithm we consider a subset of all columns

4The term “column” refers to the column-vectors pi
c and rc(pi

c) in the
constraint matrices of the LP in (8).
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I(t)
c ⊆ Ic, c ∈ C in (8), yielding the restricted master problem

P
∗,ts(t)
(R,P) = (10a)

minimize
ξ′≥0,ξic≥0,i∈I(t)

c ,c∈C

∑
c∈C

∑
i∈I(t)

c

fc(p
i
c, ŵ, w̌)ξic + f ′(P,R)ξ′

subject to
∑
c∈C

∑
i∈I(t)

c

rc(p
i
c)ξ

i
c +Rξ′ � R, (10b)

∑
c∈C

∑
i∈I(t)

c

pi
cξ

i
c +Pξ′ � P, (10c)

∑
i∈I(t)

c

ξic + ξ′ = 1, ∀c ∈ C, (10d)

where we added an artificial column with weight ξ′ and cost
f ′(P,R) = ŵT (P + δ) − w̌T (R − δ), for some arbitrary
δ 	 0. By setting ξ′ = 1 and ξic = 0, for all i ∈ I(t)

c and
c ∈ C, it can be seen that this “aggregated” column makes
(10) always feasible. Furthermore, the choice of cost leads to
the following results, indicating that this artificial column does
not alter the solution when (8) is feasible.

Theorem 3: At the optimum of (10) we have ξ′ = 0 if
a feasible solution {ξic} to (8) exists with ξic = 0, for all
i ∈ Ic \ I(t)

c , c ∈ C, and ξ′ = 1, ξic = 0, for all i ∈ I(t)
c , c ∈ C,

otherwise.
See Appendix B for a proof.
Corollary 1: Assuming feasibility of (8) we have

P
∗,ts(t)
(R,P) ≥ P ∗,ts

(R,P).
Proof: By Theorem 3 we either have ξ′ = 0 or ξ′ = 1 at

the optimum of (10). The corollary follows as I(t)
c ⊆ Ic, ∀c ∈

C, and by δ 	 0 and feasibility in (8) any solution of (8) has
a lower objective than f ′(P,R).

After solving (10), the second task at each iteration in a
column generation scheme is to compute new columns to be
added to the master problem in (10) in order to reduce the
gap described in Corollary 1. Relaxing constraints (10b), (10c)
and (10d) in the restricted master problem at iteration t and
denoting their Lagrange multipliers by λ(t),ν(t) ∈ RU

+ and
Φ(t) ∈ RC , respectively, and also including variables ξic = 0,

for all i ∈ Ic \ I(t)
c and c ∈ C, we can write the Lagrangian

for (10) as

L(t) =
∑
c∈C

∑
i∈Ic

(
fc(p

i
c, ŵ+ ν(t), w̌ + λ(t)) + Φ(t)

c

)
ξic +

(
RTλ(t) −PTν(t) −

∑
c∈C

Φ(t)
c

)
(1− ξ̃) + f̃(P,R)ξ̃. (11)

Adding any column i ∈ Ic \ I(t)
c to (10) with negative

derivative5 ∂L(t)/∂ξic = fc(p
i
c, ŵ + ν(t), w̌ + λ(t)) + Φ

(t)
c

at the (dual) optimum of (10) lowers the optimal objective
of (10) or leaves it unchanged.6 Hence, a simple criterion is
to pick the column on subcarrier c with minimal derivative,

5This derivative is also referred to as the “reduced cost” of a column [27].
6More precisely, assuming non-degeneracy of a basic solution of (10) one

can pivot on the new variable ξic with ∂L(t)/∂ξic < 0 and thereby maintain
feasibility while strictly decreasing the objective value [27]. From a dual
perspective, non-degeneracy corresponds to uniqueness of the dual solution
λ(t), ν(t),Φ

(t)
c , c ∈ C, to (10) [27]. Under this uniqueness it follows from the

existence of a negative gradient direction w.r.t. (11) at λ(t), ν(t),Φ
(t)
c , c ∈ C,

and strict duality that the optimal objective of (10) decreases strictly.

leading to decomposable subproblems similar to (7) in the
form of

qred
c (λ(t),ν(t),Φ(t)

c ) = qc(λ
(t),ν(t)) + Φ(t)

c , (12a)

= min
i∈Ic

{
fc(p

i
c, ŵ + ν(t), w̌+ λ(t))

}
+Φ(t)

c , ∀c ∈ C. (12b)

Corollary 2 (of Thm. 2): The per-subcarrier subproblem in
(12b) has polynomial complexity in the number of users U .

Proof: By definition |Ic| = |Qc|, where |Qc| has poly-
nomial size in U by Theorem 2, and the evaluation of the
objective in (3) has polynomial complexity. It remains to be
shown that there exists an algorithm for enumerating Qc with
polynomial complexity in U . To do so we interpret bit-loading
as a search in a search-tree of depth U [36]. A depth-first
search begins with an allocation 0 and sequentially proceeds
to higher bits, starting at level U . Everytime an infeasible
allocation is encountered it returns to the next-lower tree level.
Therefore, while testing all feasible allocations pc ∈ Qc (and
therefore being optimal) this search never tests more than
U |Qc| infeasible allocations pc /∈ Qc, which concludes the
proof.

The proposed DSM algorithm iterates between solving (10)
and the C subproblems in (12b). Hence, the number of
columns in (10) increases by at most C in each iteration,
cf. Algorithm 1. We emphasize that any potentially suboptimal
solution to (12b) with negative objective may improve the
restricted master problem (10), which is the reason why
problem (12b) is amenable for fast heuristics, cf. Line 7 in Al-
gorithm 1 and our overview on basic heuristics in Section IV.
Furthermore, we have that if qc(λ

(t),ν(t)) ≥ −Φ
(t)
c , ∀c ∈ C,

then P
∗,ts(t)
(R,P) = P ∗,ts

(R,P), cf. (12a). The same conclusion can

be drawn if, ∀c ∈ C, we have i ∈ I(t)
c , where i is the

minimum argument in (12b) [13], [33]. This means that the
algorithm terminates if not at least one new allocation on
any subcarrier is added to the master problem in (10). A
finite convergence time of the algorithm then follows from the
finiteness of |Qc|, c ∈ C. The negativity of qred

c (λ(t),ν(t),Φ
(t)
c )

as a necessary criterion for an improving column can also
be exploited on each subcarrier to reduce the complexity
of solving (12b), for instance by using −Φ

(t)
c as the initial

incumbent objective used for pruning the search tree in branch-
and-bound based algorithms, cf. [36] for an application.

In general, based on Theorem 1 we can bound the (non-
negative) gap P

∗,ts(t)
(R,P) − P ∗,ts

(R,P) at iteration t by

ζ̃ = P
∗,ts(t)
(R,P) − max

1≤j≤t
{qtot(λ(j),ν(j))}, (13)

where qtot(·, ·) is defined in (6), cf. Line 6 of Algorithm 1.
Our stopping criteria in Line 2 of Algorithm 1 additionally
include a primal improvement criterion which is necessary
when suboptimal solutions are used as proposed in Line 7.
Another practical measure is taken in Line 8 where we only
add new columns to the NDW master problem in (10) to
reduce its size.

B. Further Properties and Applications of NDW-DSM

We claim that the presented disaggregated NDW-DSM
algorithm is numerically more stable than previous Lagrange
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Algorithm 1 NDW-DSM

1: Initialize t = 1, I(1)
c , ∀c ∈ C, ζ̃ = ∞, P ∗,ts(0)

(R,P) = ∞, δ̄

2: while ζ̃ > ζ tgt and |P ∗,ts(t−1)
(R,P) − P

∗,ts(t)
(R,P) | > δ̄ |P ∗,ts(t−1)

(R,P) |
do

3: Solve (10) by a primal-dual LP solver, obtaining dual
multipliers [λ(t),ν(t),Φ(t)]

4: Obtain new allocations solving (12b) either ...
5: ... a) Optimally (e.g., by branch-and-bound [6], [22])
6: Compute ζ̃ as in (13)
7: ... b) Suboptimally (initially, e.g., using Algorithm 4)
8: Add only new allocations i ∈ Ic\I(t)

c to (10), t = t+1
9: Apply Algorithm 2 to recover solutions to (2)

relaxation based DSM schemes based on the following obser-
vations: As it is based on a time-sharing formulation it does
not suffer from the convergence problems [10], [19] which
may arise due to non-convexity of the original problem in (2).
In general, computing a primal feasible allocation based on the
dual optimum is then again NP-hard, but there exists a time-
sharing solution having an objective value equal to the optimal
dual one [10], [13]. This problem was also tackled in [19],
[20] by a specific Lagrange multiplier search scheme which
similarly yields time-shared solutions but works differently
with an aggregated formulation and necessitates optimal per-
subcarrier allocation schemes. We point out that the presented
basic NDW-DSM scheme may be further improved by stabi-
lization techniques but deem their treatment beyond the scope
of this text, cf. [30] for an overview. We have already pointed
out several times that NDW-DSM allows for sub-optimal per-
subcarrier bit and power allocation procedures for the discrete,
non-convex per-subcarrier problems in (12b). Furthermore,
the NDW master problem in (10) can be initialized with the
solution obtained from suboptimal algorithms such as iterative
spectrum balancing [4], [5] assuming the per-subcarrier feasi-
bility in (4) is met, thereby extending previous DSM schemes.
This initialization may happen either by initializing the set
I(1)
c , c ∈ C, using the per-subcarrier solutions, or by adding

the sum-rate and sum-power solution in a similar way we
added the artificial column in the NDW master problem in
(10). The memory of per-subcarrier solutions in the NDW
master problem in (10) may also pay off in cases where
the original problem in (2) needs to be solved for various
values of target-rates R or sum-powers P. As exemplified
in [22] sufficiently good solutions may be obtained by first
generating a set of columns I(t)

c , c ∈ C, for initial target-rates
and sum-power values and then repeatedly solving the LP in
(10) with this column set but under different target-rate and
power constraints. Hence, one solves several LPs instead of
repeatedly solving the original problem in (2).

We have shown how the NDW decomposition can be
applied to the optimization of sum-rate and sum-power as
covered by the objective in (3). More generally, any mini-
mization of a convex objective of users’ sum-power or sum-
rates can be approached by the NDW decomposition, yielding
a convex master problem eventually including auxiliary sum-
rate or sum-power variables and decomposable subproblems
in the form of (12b). Examples include the maximization of

Algorithm 2 Combination Heuristic for Time-sharing (CHET)

1: [{i∗c}c∈C] = CHET({I(t)
c , ξic, ∀i ∈ I(t)

c }c∈C,λ,ν)
2: Initialize δ, κ ≥ 0, i∗c = argmax

i∈I(t)
c
{ξic}, ∀c ∈ C

3: while No feasible solution to (2) found do δ = δ ∗ 2
4: while Allocation i∗c is updated on any c ∈ C do
5: for ∀c ∈ C do P∗ =

∑
c∈C p

i∗c , R∗ =
∑

c∈C rc(p
i∗c )

6: Ĭc = {i ∈ I(t)
c | fc(pi

c, ŵ + ν, w̌+ λ) ≤
fc(p

i∗c
c , ŵ+ν, w̌+λ)+(|fc(pi∗c

c , ŵ+ν, w̌+λ)|+
κ) · δ}

7: ΔRi
u = [Ru−R∗

u+ruc (p
i∗c )−ruc (p

i)]+, ∀u ∈ U , i ∈ Ĭc
8: ΔP i

u = [P ∗
u − p

i∗c
u + piu − Pu]+, ∀u ∈ U , i ∈ Ĭc

9: i∗c = argmini∈Ĭc
{(ŵ+ ν)TΔP i + (w̌+ λ)TΔRi}

the users’ minimum rate or weighted proportional sum-rate
fairness. To see this consider the latter objective given by [37]∑

u∈U wu log (tu), where tu are auxiliary sum-rate variables
which constrain the sum-rate as

∑
c∈C rc (pc) � t similarly

to the target-rates in (2b). It can readily be verified following
the same steps as in Section III-A that NDW decomposition
results in a convex master problem over the same variables as
in (10) and additionally the U auxiliary variables t, as well
as decomposable subproblems identical in form to those in
(12b). We refer to [38] for further optimization problems to
which NDW-DSM is applicable.

C. Combination Heuristic for Time-Sharing (CHET)

Algorithm 1 targets the solution of the time-shared problem
(8), having the same optimal objective as the dual problem
(5). In most of the previous work on dual-relaxation based
DSM algorithms the problem of recovering feasible solu-
tions for the original problem (2) is either overlooked or
circumvented by proposing direct implementations of time-
sharing solutions [4], [10], [15], [19], with an exception being
[19], [20]. However, we found that the heuristics in [19],
[20], originally proposed for a specific DSM algorithm and
rate-maximization problem, may result in large performance
losses when applied to sum-power minimization problems,
cf. Section V-A for an example. More precisely, the scheme
in [20] uses the distance to a target (sum-power / sum-rate)
solution as the decision metric for greedily selecting a per-
subcarrier solution. Furthermore, each user’s rate and transmit
power are normalized by its target-rate and the maximum sum-
power, respectively, which influences the algorithm’s valuation
of power compared to rate. Hence, the greedy selection heavily
depends on this normalization, and only indirectly on the
actual objective function. Our novel heuristic proposed in
Algorithm 2 remedies this drawback by explicitly taking the
optimization objective into account. While after convergence
of Algorithm 1 restricted subsets of columns per-subcarrier
I(t)
c ⊆ Ic are available, enumerating the product set

∏
c∈C I

(t)
c

in order to find feasible allocations for (2) remains intractable
in general. The suggested algorithm hence iteratively and
greedily selects a single allocation i∗c ∈ I(t)

c , ∀c ∈ C. The
main target is feasibility in (2), which is why in Lines 7
and 8 of Algorithm 2 the impact of choosing an allocation
i ∈ I(t)

c on the sum-power and the sum-rate constraints in
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Algorithm 3 Joint Greedy Optimization (JOGO)

1: [r,p(r), f(p(r), ŵ+ν, w̌+λ)] = JOGO(r0, U opt,λ,ν)
2: r = r0, δ∗ = 0, f prev = f(p(r0), ŵ + ν, w̌+ λ)
3: while δ∗ ≤ 0 do
4: for u = sUopt+1, . . . , sU do
5: if ∃p ∈ Q|ru(p) = ru+Δ, ri(p) = ri, ∀i ∈ U \{u},
6: then δu = f(p, ŵ + ν, w̌+ λ)− f prev

7: else δu = ∞
8: u∗ = argminu=Uopt+1...U δu, δ∗ = δu∗

9: if δ∗ ≤ 0 then ru∗ = ru∗ +Δ, f prev = f prev + δu∗

Algorithm 4 Sequential Greedy Optimization (SEGO)

1: [r,p, f(p, ŵ + ν, w̌+ λ)] = SEGO(r0, U opt,λ,ν)
2: r = r0, U greed = U − U opt

3: Determine sequence s ∈ RUgreed
by ordering users U opt +

1 ≤ u ≤ U in descending order of (w̌u + λu)/(ŵu + νu)
4: for u = s1, . . . , sUgreed do
5: [ru,p] = argmin

{ru∈B,p∈Q|r(p)�r}
{f(p, ŵ+ ν, w̌+ λ)}

(2b) and (2c) is evaluated. In Line 9 a column i∗c is chosen
which minimizes a weighted sum of sum-power and sum-rate
constraint violations. Note that the scheme tries to prevent
grave performance loss compared to P ∗,ts

(R,P) by restricting

this selection to a subset of columns Ĭc ⊆ I(t)
c , c ∈ C,

with objective values in (7) below a certain threshold. This
restriction is successively relaxed in case no allocation feasible
in (2) was found.

In the following we complete this work by giving an
overview of various heuristics for the discrete per-subcarrier
problems in (12b) as used in Line 7 of NDW-DSM in
Algorithm 1. However, we hasten to add that the proposed
decomposition framework is general and works, in principle,
with any heuristic. As these subproblems can be studied
independently we will drop the subcarrier index c throughout
the rest of the paper for ease of notation.

IV. HEURISTICS FOR DISCRETE POWER CONTROL

In [36] we study the optimal solution of the subproblems in
(12b) by branch-and-bound type of algorithms under problem-
specific variable-range reduction strategies. Under these strate-
gies we observe that problem instances with as many as 16
users can be solved optimally in short time when crosstalk
levels are low. However, in general we found optimal solutions
impractical for DSL networks with a large number of users,
motivating suboptimal heuristics being used in our NDW-DSM
framework. In the following we give an overview of the basic
building blocks of a large class of more sophisticated meta-
heuristics: the greedy search and the local search. We refer
to [22], [23] for extensions and more details on heuristics for
discrete-rate power control.

A. Greedy Search Schemes

In Algorithm 3 we describe an iterative joint greedy op-
timization scheme (JOGO) for optimizing the per-subcarrier
optimization problems (12b) over the bit allocation of U greed =

U − U opt users, where we assume the allocations ru of users
1 ≤ u ≤ U opt, are fixed. In each iteration the cost for loading
another Δ bits for any of the U greed users is calculated and Δ
bits are allocated to the user minimizing this cost, cf. Lines 4-
9 in Algorithm 3. Differently to JOGO, in the greedy heuristic
SEGO the bit-allocation is performed sequentially over users,
cf. Algorithm 4. Each user greedily minimizes the Lagrangian
f(p, ŵ + ν, w̌ + λ) under fixed bit allocations of already
loaded users, cf. Line 5. Users loading bits at an earlier stage
see in general less crosstalk and therefore encounter more
possibilities for bit-loading than if their turn had been at a later
stage. Therefore we heuristically reschedule the users based
on their weights for rates and power using the relative metric
(ŵu + νu)/(w̌u + λu), cf. Line 3 in Algorithm 4. Comparing
the two heuristics JOGO and SEGO from a complexity point
of view and assuming a recursive computation of the matrix
inverses for evaluating p(r) [16] we have that JOGO has a
complexity per loaded bit-step Δ of O(U3), while that of
SEGO is only O(U2), cf. the cost-update in Lines 4 to 7 of
Algorithm 3.

To round-off our description of greedy heuristics we note
that they can also be applied jointly with optimal branch-and-
bound schemes as in [6], [36], for instance to take advantage of
the presence of a few dominant disturbers. More precisely, an
exhaustive search can be represented by a search tree where
level u ∈ U of the tree relates to the bit-loading decision
of the u’th user, and the leaves of the tree correspond to the
discrete power allocations Q. We can make a mixed exhaustive
and greedy search (MEGS) by only performing an exhaustive
search for the first U opt users, while for each tested allocation
ru, 1 ≤ u ≤ U opt, a heuristic algorithm is used to allocate
bits to the remaining U greed = U −U opt users. While there are
various options on the design of the optimal and the heuristic
search part, in our simulations we use a depth-first branch-and-
bound scheme [36] and SEGO in Algorithm 4, respectively.
In Section V-A we will study a near-far scenario in which the
proposed decomposition of the search tree in MEGS leads to
a near-optimal solution at a reduced complexity compared to
optimal allocation schemes.

B. Local Search

An essential part of many meta-heuristics is the local search,
where in [23] we found that a simple scheme presented next
is able to substantially improve the average performance of
the presented greedy schemes. In local search schemes one
iteratively moves from an allocation r(t) in iteration t of the
search to an improving allocation r(t+1) ∈ N (r(t)) ⊆ B where
f(r(t+1)) < f(r(t)). The algorithm terminates when no such
improving step is possible, i.e., when a local optimum r with
f(r̃) ≥ f(r), ∀r̃ ∈ N (r) has been reached. The set N (r) is
called the neighborhood of r, where a simple but effective
choice was found to be the set [23]

N (2)(r) = N (1)(r) ∪ N̄ (2)(r), (14a)

N (1)(r) = {r̃ ∈
∏
u∈U

B | r̃u = ru ±Δ,

r̃i = ri, ∀i ∈ U \ {u}, u ∈ U}, (14b)

N̄ (2)(r) = {r̃ ∈
∏
u∈U

B | r̃u = ru ±Δ, r̃ū = rū ±Δ,
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r̃i = ri, ∀i ∈ U \ {u, ū}, u �= ū, u, ū ∈ U}, (14c)

which contains all allocations that can be reached by perturb-
ing at most two elements of r. Note that the complexity of
a local search depends on the initialization point r(0) and is
intuitively lower when the search is initialized “close” to a
local optimum. This observation led to a “warm-start” local
search scheme in [22]. The following result characterizes the
asymptotic size of the proposed neighborhood in U and the
complexity of local search, respectively.

Theorem 4: Assuming Hui

Huu ≥ α > 0, ∀u, i ∈ U , the
numbers of neighboring points |N (1)(r)| and |N (2)(r)| to a
point r with p(r) ∈ Q grow as O(U), respectively.

Proof: The first part on |N (1)(r)| follows trivially from
the definition in (14b), while the second part on |N (2)(r)|
follows from the proof of Theorem 2 as follows. The number
of users u ∈ U with non-zero bit allocation ru > 0 in a
feasible allocation r with p(r) ∈ Q was shown to be bounded
by a constant Û under the assumptions of the theorem. All
those users u ∈ U with ru = 0 can only increase their rates.
Therefore, the size |N̄ (2)(r)| of the set in (14c) comprising all
allocations generated by changing exactly two elements of r is
bounded by ÛU . Altogether the size |N (2)(r)| = |N (1)(r)|+
|N̄ (2)(r)| of the set in (14a) grows linearly in U .

Corollary 3 (of Thm. 2 and Thm. 4): The local search for
the problem in (12b) has polynomial complexity in U under
the assumptions and the neighborhood set of Theorem 4.

Proof: This follows from Theorems 2 and 4 and by the
polynomial complexity of evaluating p(r) by solving a linear
system, cf. [16].
The assumptions in Theorem 4 are satisfied in the following.
More generally they hold in all randomized schemes in [22],
[23] as these only evaluate the neighborhood around rates r
where the power allocation p(r) is in the feasible set Q.

V. SIMULATION RESULTS

In Section V-A we will demonstrate the marginal loss
incurred by CHET, the heuristic for recovering primal feasible
solutions from the solution of NDW-DSM. At the same time
we show an application scenario for the MEGS heuristic. The
simulation results in Section V-B give an example of a large
network with 50 lines where our proposed DSM framework
gives substantial performance gains compared to previous
DSM schemes. In order to demonstrate that our algorithm
performs very well not only in special cases, we look at the
average sum-rate performance achieved under our framework
compared to previous algorithms in a set of 103 distributed
DSL scenarios in Section V-C. Throughout we assume a
DSL system with simulation parameters chosen in accordance
with the ETSI VDSL standard [39], with Γ = 12.8 dB,
B̂ = 15, Δ = 1, two transmission bands as defined in band
plan 997-M1x-M, and with noise comprising alien crosstalk
according to ETSI VDSL noise A added to a flat background
noise at −140 dBm/Hz. The channel model is based on the
“TP100” cable model in [39], and the common 99% worst-
case crosstalk channel model for European cables [24], cf. [40]
for a publicly available DSL simulator. We will compare
our algorithm to single-user bit-loading [41] under worst-case
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Fig. 2. Sum-power regions in a 4 user VDSL upstream near-far scenario.

crosstalk noise
∑

i∈U\uH
ui
c p̂ic, c ∈ C, for user u ∈ U (“Mask-

Based”), to an iterative spectrum balancing (ISB) algorithm7,
and the central discrete bit-loading (CDBL) algorithm in [16].

A. A Near-Far DSL Example - Applying MEGS and CHET

In Fig. 2 we present the power-regions of various DSM
algorithms in a 4 user VDSL upstream near-far scenario.8 In
this scenario we have that the crosstalk between the longer
two lines is low compared to the shorter two lines, and we
therefore expect the MEGS heuristic presented in Section IV-A
to be useful. As Fig. 2 shows, in this near-far scenario the
power-region obtained by the MEGS heuristic is close to the
lower-bound given by the optimum9 P ∗,ts of the time-sharing
problem in (8), and larger compared to the other two popular
heuristics, even when we employ CHET on top. For example,
the lowest sum-power obtained by the combination of ISB
with CDBL is more than 30% above that obtained by the
combination of NDW-DSM with MEGS and CHET, while
applying CDBL alone implies an increase of more than 19%.
This also shows that initializing bit-loading schemes using
other (e.g., continuous) DSM schemes does not necessarily
improve their performance.10

The share of subcarriers where time-sharing is applied at
the solutions of the time-sharing problem in (8) is in the range
between 0% (meaning that a single solution was found and the
relaxation gap between the problems in (2) and (8) is hence
zero) and 60%. These numbers depend however on the used

7In ISB we perform the Lagrange multiplier update sequentially over users
while fixing PSDs as in [5] but differently use a bisection search for this
purpose and perform the line-search over the bit-rates. As ISB does not result
in a discrete bit allocation we floor the final bits and run CDBL from this
initialization, cf. [42] for a similar approach in extending continuous rate-
maximizing DSM schemes. The convergence criterion is a maximum number
of 50 user sweeps not improving the Lagrangian or a total of 200 iterations,
while for the number of iterations in NDW-DSM using heuristics we set
30 ≤ t ≤ 60 and set δ̄ to 0.1 ppm, cf. Line 2 in Algorithm 1. The used LP
solver for the problem in (10) is the primal-dual interior point solver in [43].

8Parameters for Fig. 2 were R1 = R2 = 42Mbps, R3 = R4 =
3Mbps, ŵ1 = ŵ2 = 0.5 ∗ [0.05, 0.1, . . . , 0.95], ŵ3 = ŵ4 = 0.5 ∗
[0.95, 0.9, . . . , 0.05], w̌u = 0, ∀u ∈ U , shorter and longer two lines have a
length of 300 m and 1000 m, respectively, and are collocated at the CO side.
Results for the upper three curves show non-dominated points only.

9The time-sharing problem in (8) is solved optimally by Algorithm 1,
solving the subproblems in (12b) as stated in Lines 5 and 6 in Algorithm 1,
and omitting Line 9 which only concerns the original problem in (2).

10For brevity we omitted results obtained under the continuous DSM
scheme in [44], an energy-efficient modification of that in [45], and extended
by CDBL as done for ISB to obtain discrete-rate solutions, which further
support this statement.
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Fig. 4. Average per-user rate and sum-power in a 50 user VDSL scenario.12

LP solver. While we apply the interior-point solver in [43], a
simplex solver [27] would result in a number of time-shared
subcarriers as given in Theorem 2.

Fig. 2 also exemplifies the performance loss when the
heuristic in [20] is used jointly with NDW-DSM, cf. Sec-
tion III-C for an intuitive explanation.11 Differently, the CHET
heuristic for recovering from time-sharing has, for the pre-
sented results of this section and in combination with NDW-
DSM, a guaranteed suboptimality in the original problem in
(2) of less than approximately 2%. This is inferred by using
the lower-bound on the optimal objective of (2) obtained by
optimally solving the time-sharing relaxation in (8), cf. the
lowest curve in Fig. 2. This shows the validity of our approach
to optimize (2) by (e.g., approximately) solving the time-
sharing problem in (8) and reconstructing solutions for (2)
by the CHET heuristic.

B. Mixed DSL Example with 50Users

Here we consider a 50 user upstream mixed VDSL scenario
as shown in Fig. 3 with LCO−Cab = 500m, LCab−u = 300m,
∀u ∈ U , where half of the users are deployed from the central
office and the other half from the cabinet. Fig. 4 shows
the results of various DSM schemes under rate-maximization
(ŵ = 0, w̌ = 1, cf. (3)) and sum-power minimization
(ŵ = 1, w̌ = 0, Ru = 6Mbps, ∀u ∈ U), respectively. We
apply NDW-DSM using a warm-start local search heuristic
and a randomized heuristic based on SEGO, cf. [22] for a
detailed description and parameters settings. The runtime of
NDW-DSM in this scenario was around 6 hours, while that
of ISB and CDBL was in the order of 1.3 and 0.4 hours,

11We adapted the mixing algorithm in [20] to the studied sum-power
minimization problem by using the (normalized [20]) Euclidean distance to
the optimal time-shared solution found by NDW-DSM as the selection metric.

12Sum-power results under the mask-based scheme were omitted as the
target-rates could not be reached.

respectively.13 However, in terms of sum-rate NDW-DSM
shows a gain of 57.5%, 39.1% and 7.8% in comparison
to “Mask-Based” bit-loading, ISB and CDBL, respectively.
Regarding solely the short lines NDW-DSM improves their
sum-rate by 88.4% compared to CDBL, demonstrating the
disadvantage of long lines under the greedy DSM scheme
CDBL. In terms of transmit sum-power NDW-DSM saves
21.6% and 29.5% compared to ISB and CDBL, respectively.
In conclusion, this example demonstrates the possible gains
of our combinatorial search compared to user-iterative and
greedy DSM schemes under discrete rates.

C. Average Performance for Mixed DSL Deployments

Differently to the specific DSL scenario investigated in the
previous section, we will now analyze the performance of our
DSM framework in a large set of mixed VDSL deployments
as shown in Fig. 3 with 25 lines out of which 10 lines connect
to the cabinet. We generated 103 downstream scenarios by
uniformly sampling the lengths LCO−Cab ∈ [100, 1400] and
LCab−u ∈ [50, 500], ∀u ∈ U . Note that this random topol-
ogy selection results in a diverse set of generated crosstalk
coupling scenarios. The average runtime complexity of NDW-
DSM per network scenario was approximately one hour and
therefore in the order of the runtime complexity of ISB, but
significantly higher than that of CDBL which on average only
required in the order of 5minutes. However, we note that
reductions in runtime of NDW-DSM as well as ISB may
be achieved by further parallelization of the per-subcarrier
subproblem solutions.

Fig. 5 shows the average per-user rates achieved by dif-
ferent DSM schemes together with 99% confidence intervals
according to a t-test. The average gain by NDW-DSM is
+1.21± 0.03Mbps (6.2%), +1.49± 0.05Mbps (7.7%), and
+5.94 ± 0.06Mbps (40.0%) compared to ISB, CDBL and
Mask-Based bit-loading, respectively. Regarding once more
only the central-office deployed lines we have an average gain
by NDW-DSM compared to CDBL of +1.56 ± 0.05Mbps
(11.1%), confirming the behavior of CDBL towards longer
lines as observed in Section V-B.

VI. CONCLUSIONS

We proposed a novel power control algorithm for
interference-limited discrete-rate multi-user and multi-carrier
systems. It uses a specific stable dual decomposition scheme
which allows for suboptimal combinatorial heuristics being
used for the per-subcarrier subproblems, and a combination

13All methods are coded in Matlab with the exception of the local search in
NDW-DSM and the line-search in ISB which are written in C. The platform
is an 8-core Intel system at 3.33GHz with 12GB RAM. The subproblem
solutions in NDW-DSM for subcarrier groups as suggested by the warm-start
method in [22] were parallelized in Matlab over 4 processes. We note that
the exact runtimes may vary depending on the channel and network model.
For example, in experiments using the measurements in [46] and assuming
the lines are distributed in three binders with an inter-binder attenuation of
7.6 dB as reported in [47] we observed roughly 50% higher simulation times
for rate maximization under NDW-DSM and ISB, while that under CDBL is
roughly proportional to the achieved bit-rate and was hence even three times
as high. We attribute this behavior to the fairly low crosstalk couplings and
therefore larger number of feasible allocations compared to the worst-case
crosstalk model, cf. the discussion on complexity in Section II-B.
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Fig. 5. Average rates in 103 DSL scenarios with 99% confidence intervals.

heuristic to recover solutions to the original primal problem.
An overview of the basic building blocks for various heuristics
was given, including the greedy search, the local search, and a
mixed exhaustive and greedy search procedure which exploits
the presence of dominant crosstalkers. Performance gains
using the novel power control framework using heuristics were
quantified by simulations on specific near-far digital subscriber
line (DSL) scenarios as well as a large set of thousand mixed
DSL deployments. The results show an average gain in sum-
rate by our algorithm of 6% and 40% compared to dynamic
and static spectrum management schemes, respectively.

APPENDIX A
PROOF OF THEOREM 2

Proof: We will analyze the number of feasible discrete
power allocations |Q| per-subcarrier in an interference chan-
nel. The subcarrier indices are omitted for ease of notation.
We show that there is a bound Û on the maximum number
of users which can jointly transmit at the lowest positive
rate Δ. This will be seen to limit the number of “types”
of rate allocations by a scenario dependent constant, where
the number of specific allocations belonging to each of those
allocation types grows polynomially in U . Altogether this
will establish the polynomial growth of |Q|. As we are
solely interested in an upper-bound Û we will neglect mask
constraints as these only further constrain the set of feasible
allocations Q. Feasibility of all users loading Δ bits implies
ru (p) ≥ Δ, ∀u ∈ U . Reformulating (1) we obtain, ∀u ∈ U ,

1 ≥ (2Δ − 1)Γ

(∑
i∈U\u

Hui

Huu

pi

pu
+

Nu

Huupu

)
. (15)

Using Nu

Huupu ≥ 0, Hui

Huu ≥ α > 0, and assuming u =

argmini∈U{pi}, we have pi/pu ≥ 1 and the necessary
condition for feasibility U ≤ Û , where Û derived from (15)
is given in (9). Note that for symmetric scenarios with Hui

Huu =
α,Nu = 0, ∀u ∈ U , this bound is in fact tight as all power
allocations are equal at optimum, i.e., pu = pi, ∀u, i ∈ U . Next
we apply the method of types [48, Ch. 11.1] where any vector
r = r(p),p ∈ Q, is characterized by a histogram (a “type”)
Tr out of the set of all U -user histograms TU , specifying the
relative number of occurrences Tr(k · Δ) of any number of
bits (k ·Δ) ∈ B, 0 ≤ k ≤ |B|−1, in r. As any specific number
of bits can only appear U times, we have for the number of
types [48, Thm. 11.1.1]

|TU | ≤ (U + 1)|B| � m(U). (16)

The set of bit-loading sequences leading to a certain type T
is its type class S(T ) of size

|S(T )| =
(

U

UT (0), . . . , UT (B̂)

)
≤ 2UH(T ) (17a)

≤ 2
U(B̂/Δ+1)· �U/(B̂/Δ+1)�

U ·log
( �U/(B̂/Δ+1)�

U

)
� n(U), (17b)

where the first inequality follows from [48, Thm. 11.1.3] and
H(·) denotes the entropy function. Now we use the fact that
interference among users limits the number of types. More
precisely, we have a correspondence between a type T̂ ∈ TÛ
and a type T ∈ TÛ+t given by

TÛ+t =

{(
Û T̂ (0) + t

Û + t
,
Û T̂ (Δ)

Û + t
, . . . ,

Û T̂ (B̂)

Û + t
,

)
| T̂ ∈ TÛ

}
.

(18)

This holds as even the type with the largest frequency of
occurrence of a non-zero number of bits does not allow for
further users loading a positive number of bits when U > Û .
In other words, |TU | = |TÛ | ≤ m(Û), ∀U ≥ Û . We will
write T T̂ to denote a type in TU formed from a type T̂ ∈ TÛ
according to (18). Assuming any U > Û + t, t > Û , we have

|S(T T̂ )| = U · (U − 1) · . . . · (Û + 1)

(Û T̂ (0) + t) · . . . · (Û T̂ (0) + 1)
|S(T̂ )| (19a)

≤ U · (U − 1) · . . . · (Û + 1)

t · (t− 1) · . . . · 1 n(Û) (19b)

=
U · (U − 1) · . . . · (U − Û + 1)

Û !
n(Û) = O

(
U Û
)

(19c)

where in (19a) we use the fact that only the number of
occurrences of 0 bits grows for U ≥ Û , in (19b) we use
the bound in (17b) and bound the expression by assuming
T̂ (0) = 0, and in (19c) we use the assumption t > Û .
Summarizing, for any U > Û we have that |TU | ≤ m(Û)
and |S(T )| is polynomially bounded by (19c), ∀T ∈ TU ,
concluding the proof.

APPENDIX B
PROOF OF THEOREM 3

Proof: Assume feasible weights ξ̃′, ξ̃ic, i ∈ I(t)
c , c ∈ C, in

(10) with 0 < ξ̃′ < 1. Consider weights ξ′ = 0, ξic = ξ̃ic/(1−
ξ̃′), ∀i ∈ I(t)

c , for the problem in (10), setting the weights
of columns not included in (10) to zero, i.e., ξic = 0, ∀i ∈
Ic \ I(t)

c , ∀c ∈ C. Regarding (10b)–(10d), from the feasibility
of ξ̃′, {ξ̃ic} it follows that the weights ξ′, {ξic} are also feasible
in (8) and (10). Using (3) we can write the objective value for
weights ξ′, {ξic} in (10a) as∑

c∈C

∑
i∈I(t)

c

(
ŵTpi

c − w̌T rc(p
i
c)
)
ξic (20a)

�
∑
c∈C

∑
i∈I(t)

c

(
ŵTpi

c − w̌T rc(p
i
c)
)
ξ̃ic +

(
ŵTP− w̌TR

)
ξ̃′

(20b)

≺
∑
c∈C

∑
i∈I(t)

c

(
ŵTpi

c − w̌T rc(p
i
c)
)
ξ̃ic + f ′(P,R)ξ̃′ (20c)
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where the two parts in (20b) are obtained by multiplying (20a)
once by (1 − ξ̃′) and once by ξ̃′, respectively, and using the
definition of ξic above as well as feasibility in (10). Inequality
(20c) follows as δ 	 0. This implies that the weights 0 <
ξ̃′ < 1 are not optimal in (10). Again from δ 	 0 it follows
that if weights as described in the theorem exist they will be
feasible in (10) with ξ̃′ = 0 and have a lower objective than
f ′(P,R), concluding ξ̃′ = 0 at optimum of (10). On the other
hand, if no weights as described in the theorem exist we must
have ξ′ > 0 at optimum of (10), 0 < ξ′ < 1 would lead to a
contradiction by the arguments above, and hence ξ′ = 1.
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